

The Effect of Apoaequorin on Learning and Memory in *Drosophila melanogaster*

C. Jack Conway and Josie Gale; Stefanie Otto-Hitt, PhD

Department of Biological Sciences, Carroll College

Introduction

- The organism *Drosophila melanogaster* (*D. melanogaster*) is a common model organism in biology.
- Prevagen, which is primarily comprised of Apoaequorin, is a supplement that claims to improve memory.
- Apoaequorin has calcium binding capabilities and protects against neuron degeneration.
- The *Cadps* gene encodes activator proteins involved in the exocytosis of neurotransmitters and neuropeptides.
- The *RyR* gene encodes receptors that regulate release of intracellular calcium.
- **Hypothesis:** It was hypothesized that addition of Prevagen into the *D. melanogaster's* diet would improve learning and memory and increase expression of *Cadps* and *RyR* due to their role in calcium regulation.

Methods

- Culturing: Flies were kept in 10 mL of potato flakes with 10 mL of DO water and five yeast pellets
- Treatment: 30 flies were kept in 10 mL of potato flakes with 62 uL of Prevagen treatment solution and five yeast pellets
- Starvation: Control and treatment groups were starved for five hours prior to performing behavioral assays
- Short-Term Memory Assay: Flies were conditioned and placed in a Y-maze for seven minutes
- Long-Term Memory Assay: Flies rested for 25 minutes before being placed into the Y-maze for seven minutes
- Anesthesia Resistant Assay: Flies were cold-shocked for two minutes and placed into a Y-maze for seven minutes
- Gene Expression: A combination of larval RNA extraction and RT-qPCR amplification was used to measure gene expression

Results

Tabel 1. Shows total number of flies for each replicate of each assay.

Week of Experiment	Sample Sizes (Number of Flies)					
	Control			Treatment		
	Short-Term Assay	Long-Term Assay	Anesthesia Resistant Assay	Short-Term Assay	Long-Term Assay	Anesthesia Resistant Assay
Week One (9/19)	5	5 (only 1 participant)	4 (only 1 participant)	5 (only 1 participant)	5	5
Week Two (9/26)	9	9	7	4	2 (only 2 participants)	1 (only 1 participant)
Week Three (10/3)	29	26	26	24	23	19
Week Four (10/10)	26	23	11	23	20	19
Week Six (10/24)	21	20	20	22	21	21
Week Seven (10/31)	22	22	22	29	29	29
Week Eight (11/7)	29	29	23	23	21	20
Week Nine (11/14)	26	24	22	29	22	21

Control

Figure 1. Flies in a Y-maze undergoing decision point in memory assay

Figure 3. Long Term Memory Assay. Depicts the fraction of flies that made the correct choice following visual conditioning (p=0.0009, n=83 & 88)

RyR

Apoaequorin

Figure 2. Short Term Memory Assay. Depicts the

fraction of flies that made the correct choice

following visual conditioning

(p=0.138, n=110 & 104)

p = 0.138

Fraction Displayed Volume 1:0

Figure 4. Anesthesia-Resistant Memory Assay. Depicts the fraction of flies that made the correct choice following visual conditioning (p=0.056, n=76 & 83)

Cadps

Figure 5. Fold
change in
expression of the
Cadps and RyR
genes in
Apoaequorintreated flies
compared to
control flies. Error
bars represent the
standard deviation
of each mean
(p=0.00056 &
0.095, n=5)

Conclusion

- Apoaequorin treatment resulted in increased *Cadps* expression in *D. melanogaster* larvae.
- Treated flies showed mixed learning and memory among the assays with only long term memory and learning showing significance.
- Future research could target different genes, improve conditioning protocols for the memory assays, increase replicates, and increase sample size to limit variance.
- The results show that, at a molecular level, Apoaequorin caused an increase in the expression of the *Cadps* gene and in learning and memory on a long term scale.

References

- o Ehlers VL. Brain Behav. 2020.
- FlyBase. FlyBase Gene Report:
 DMEL\CADPS.
- FlyBase. FlyBase Gene Report: DMEL\RYR.
- Otto-Hitt S. 2024 Fall.
- Ouincy Bioscience. Prevagen®.
- Shane-McWhorter L.
 Apoaequorin. Merck Manual Professional Edition. 2023.

Acknowledgements

We would like to thank our faculty advisor Dr. Stefanie Otto-Hitt for her superb guidance throughout our project.