• Login
    View Item 
    •   Carroll Scholars Home
    • Carroll College Student Undergraduate Research Festival
    • Carroll College Student Undergraduate Research Festival 2018-2019
    • View Item
    •   Carroll Scholars Home
    • Carroll College Student Undergraduate Research Festival
    • Carroll College Student Undergraduate Research Festival 2018-2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Math Modeling Contest: Optimized Plan to Leave the Louvre

    Thumbnail
    View/Open
    FinalSURF2019.pdf (530.2Kb)
    Author
    Davidson, Shirley; Cox, Terry; Crooks, Sabrina
    Date of Issue
    2019-04-25
    Metadata
    Show full item record
    URI
    https://scholars.carroll.edu/handle/20.500.12647/7210
    Title
    Math Modeling Contest: Optimized Plan to Leave the Louvre
    Abstract
    The distances between every section of the Louvre, exiting speeds dependent upon an individual's surroundings, time of day, total people, distribution of people, and stair dimensions are all factors utilized to establish a model for evacuating the Louvre. Our goal was to create an emergency protocol procedure that minimized the amount of time required to safely remove all guests from the Louvre. Using Dijkstra’s Algorithm to find the shortest path based on average distance between connecting nodes, three different piecewise difference equations were created to model the flow of guests out of the Louvre. With an average of 15,000 people touring the museum daily, we created an algorithm to distribute people based on time and section popularity for our initial conditions. Model One was the simplest, it had guests exit according to the shortest distance. Model Two was a bit faster as rerouted those who were outside of a node through a different exit pathway. Model Three was the fastest with a time of only 20 minutes until all guests had been successfully evacuated. With each model the bottlenecks were reduced. We suggest installing our Model Three emergency evacuation procedure within the Louvre's app. Once triggered, this model would guide all guests to the quickest exit pathways through the language selected by the user. Personnel would also be notified of were they should be stationed to help coordinate exit efforts at the high density nodes.
    Collections
    • Carroll College Student Undergraduate Research Festival 2018-2019

    Browse

    All of Carroll ScholarsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV