• Login
    View Item 
    •   Carroll Scholars Home
    • Mathematics, Engineering and Computer Science
    • Mathematics, Engineering and Computer Science Undergraduate Theses
    • View Item
    •   Carroll Scholars Home
    • Mathematics, Engineering and Computer Science
    • Mathematics, Engineering and Computer Science Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Weyl's Theory Of Non-Riemannian Geometry And Relativity

    Thumbnail
    View/Open
    1968_DybaW_THS_0001264.pdf (7.465Mb)
    Author
    Dyba, William
    Advisor
    Alfred Murray; Kenneth Rogers; Marie Vanisko
    Date of Issue
    1968-04-01
    Metadata
    Show full item record
    URI
    https://scholars.carroll.edu/handle/20.500.12647/3497
    Title
    Weyl's Theory Of Non-Riemannian Geometry And Relativity
    Type
    thesis
    Abstract
    The non-Riemannian geometry of Weyl is an outgrowth of Levi- Civita’s concept of parallelism. It is based on the concept of linear displacement. In Weyl’s geometry length is non-transferable and, in light of this indeterminateness that surrounds the comparison of lengths in different places, we must confine ourselves to the comparison of lengths at any one place or at points separated by infintesmal intervals. We must therefore fix at every point of space certain measuring rods which are to serve as a unit of length when we measure lengths situated by their side. The totality of these unit rods constitute what is known as a gauge system. These gauges may be selected arbitrarily. We will give a detailed discussion of the gauge system later in the thesis. Moreover, since Weyl’s geometry is a generalization of Riemann’s, we might first consider some of the foundations of that geometry which are applicable to the former. This we shall do by a process of abstraction. We shall proceed from a Euclidean space defined on the more familiar Cartesian co-ordinates to one defined on the general or curvilinear co-ordinates of three dimensions. We then proceed to a space of n dimensions and to the Riemann space. We shall discuss the theory of tensors from an intuitive standpoint using these geometrical foundations. The body of the thesis will involve a detailed discussion of the geometrical foundations of Weylian geometry and some of its important geometrical properties. The conclusion will be synthesis of the most important physical implications of Weylian geometry to the general theory of relativity.The non-Riemannian geometry of Weyl is an outgrowth of Levi- Civita’s concept of parallelism. It is based on the concept of linear displacement. In Weyl’s geometry length is non-transferable and, in light of this indeterminateness that surrounds the comparison of lengths in different places, we must confine ourselves to the comparison of lengths at any one place or at points separated by infintesmal intervals. We must therefore fix at every point of space certain measuring rods which are to serve as a unit of length when we measure lengths situated by their side. The totality of these unit rods constitute what is known as a gauge system. These gauges may be selected arbitrarily. We will give a detailed discussion of the gauge system later in the thesis. Moreover, since Weyl’s geometry is a generalization of Riemann’s, we might first consider some of the foundations of that geometry which are applicable to the former. This we shall do by a process of abstraction. We shall proceed from a Euclidean space defined on the more familiar Cartesian co-ordinates to one defined on the general or curvilinear co-ordinates of three dimensions. We then proceed to a space of n dimensions and to the Riemann space. We shall discuss the theory of tensors from an intuitive standpoint using these geometrical foundations. The body of the thesis will involve a detailed discussion of the geometrical foundations of Weylian geometry and some of its important geometrical properties. The conclusion will be synthesis of the most important physical implications of Weylian geometry to the general theory of relativity.
    Degree Awarded
    Bachelor's
    Semester
    Spring
    Department
    Mathematics, Engineering & Computer Science
    Collections
    • Mathematics, Engineering and Computer Science Undergraduate Theses

    Browse

    All of Carroll ScholarsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV