• Login
    View Item 
    •   Carroll Scholars Home
    • Mathematics, Engineering and Computer Science
    • Mathematics, Engineering and Computer Science Undergraduate Theses
    • View Item
    •   Carroll Scholars Home
    • Mathematics, Engineering and Computer Science
    • Mathematics, Engineering and Computer Science Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Terraforming Mars via Aerobraking an Asteroid

    Thumbnail
    View/Open
    PowellA_Final.pdf (988.0Kb)
    Author
    Powell, Austin
    Date of Issue
    2015-04-01
    Subject Keywords
    Mars, terraforming, asteroid
    Metadata
    Show full item record
    URI
    https://scholars.carroll.edu/handle/20.500.12647/3387
    Title
    Terraforming Mars via Aerobraking an Asteroid
    Type
    thesis
    Abstract
    Terraforming Mars is a tantalizing topic for the future of humanity. It has been estimated that an increase in temperature of about four degrees Kelvin would result in a runaway greenhouse effect on Mars, raising the temperature and atmospheric pressure on Mars to habitable conditions. One of the proposed methods for terraforming Mars involves impacting an asteroid to raise the temperature by four degrees Kelvin. There has been apprehension at this method, though, due to the destructive capabilities of asteroids. Michio Kaku proposes that we use the atmosphere to slow the impacting body before collision. Modeling this proposition as an aerobrake maneuver, we explore thermal energy delivered during aerobraking as a percentage of the total energy delivered to Mars. We used a Runge-Kutta 4th order method to model the aerobraking of an asteroid from the Martian gravitational sphere of influence to different initial aerobraking altitudes. With an asteroid matching the physical aspects of 99942 Apophis (density of about 2 cmg 3 , mass of 4 × 1010 kg), only about 46% of the energy delivered can be dissipated via aerobraking. However, a comet with a density similar to Halley’s Comet (about 0.6 cmg 3 ) and a much smaller mass than 99942 Apophis (about 5 × 108 kg) can achieve around 56% of total energy delivered as thermal energy from aerobraking. The mass of the asteroid ultimately determines how large of a temperature increase the aerobraking body delivers. An asteroid matching 99942 Apophis can deliver the necessary energy to raise the temperature by four degrees Kelvin whereas around twenty comets matching the density of Halley’s Comet with a mass of 5 × 108 kilograms would be needed to deliver the necessary energy.
    Degree Awarded
    Bachelor's
    Semester
    Spring
    Department
    Mathematics, Engineering & Computer Science
    Collections
    • Mathematics, Engineering and Computer Science Undergraduate Theses

    Browse

    All of Carroll ScholarsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV