Show simple item record

dc.contributor.authorCooper, Gwendolyn
dc.contributor.authorViles, Ethan
dc.date.accessioned2021-04-21T03:44:07Z
dc.date.available2021-04-21T03:44:07Z
dc.date.issued2021-04-16
dc.identifier.urihttps://scholars.carroll.edu/handle/20.500.12647/10383
dc.identifier.urihttps://www.youtube.com/watch?v=ZD-W0peZQgk
dc.description.abstractSpace sojourns are crucial for understanding aeronautics, physics, the solar system, and evaluating the possibility of interplanetary travel. However, there are many potential health risks associated with space travel such as prominent detrimental effects on both the cardiovascular and musculoskeletal systems. In space, astronauts experience a micro-gravitational force of 10-6 G. The musculoskeletal system has been of particular focus for the risks of microgravity because of the mechanosensitive nature of the tissues. Due to the lack of joint loading in space, there is high concern for mobility issues during and after spaceflight. Osteoarthritis (OA) is one of the chief concerns for space travel. OA can be debilitating to patients, and is the most common degenerative joint disease, but there are no current interventions to restore or prevent OA due to the poor understanding of the underlying disease mechanism. OA is thought to be caused by improper loading of the joint, and a microgravity environment causes altered loading of joints that may be similar to conditions of OA generation. To investigate the effects of microgravity on chondrocyte metabolism, and implications for OA, human chondrocytes were encapsulated in a three-dimensional agarose gel construct to mimic the microenvironment of cartilage. Gel constructs were then introduced to a simulated microgravity (SM) environment using a rotating cell culture system (RCCS). Global metabolomics, a method that analyzes thousands of small, intermediate molecules within a sample, was used to analyze the effects of microgravity on chondrocyte metabolism.en_US
dc.language.isoen_USen_US
dc.titleA Pilot Study: The effect of microgravity on chondrocyte metabolismen_US
dc.typePresentationen_US
carrollscholars.object.departmentBiologyen_US
carrollscholars.object.coursenumberBI-499en_US
carrollscholars.object.coursenameSenior Thesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record