Efficient HVAC Design in Helena, MT

Aaron Dhanens
April 16, 2020
Introduction

- New office building construction in Helena, MT
 - Approximately 55 workers
 - Four private offices, large open office space with cubicles

- Needs a complete heating, ventilation, and air conditioning (HVAC) system
 - Boiler and associated hot water system
 - Air handling unit (AHU) and associated ductwork
 - Cooling system

- Provide a recommendation for six or twelve south facing windows

- Implement a solar wall into the design
Design Criteria

• Office building to be built in Helena, MT
 • Occupied design temperatures: 72F heating, 75F cooling
 • Unoccupied design temperatures: 64F heating, 82F cooling

• Must adhere to IECC – 2012
 • Provides required insulation R values

• Must adhere to ASHRAE 62.1 – 2013
 • Provides minimum ventilation requirements

• Maximum and minimum outside temperatures according to ASHRAE 90.1 – 2013
 • 90.5F maximum, -12.5F minimum
Design Constrains

- Additional heating and cooling due to added windows
- Solar wall
 - Additional ductwork and control systems
 - Complicates control sequence
- Physical design constraints
 - 3 ft. plenum space
Preliminary Design Analysis

- **AHU – Constant volume vs variable volume**
 - Constant air volume system
 - Inexpensive and simple
 - Not very efficient
 - Imprecise temperature control
 - Variable air volume system
 - More expensive and complicated
 - More efficient
 - Precise temperature control

- **Boiler – Condensing vs non-condensing**
 - Condensing
 - More efficient 91+%
 - Higher initial cost
 - Non-condensing
 - Less efficient ~80%
 - Lower initial cost

<table>
<thead>
<tr>
<th>Boiler Type</th>
<th>Eff.</th>
<th>Gas BTU</th>
<th>Therms</th>
<th>Fuel Price/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing</td>
<td>91%</td>
<td>209623540</td>
<td>2096.24</td>
<td>$ 1,320.63</td>
</tr>
<tr>
<td>Non-C</td>
<td>80%</td>
<td>238446776</td>
<td>2384.47</td>
<td>$ 1,502.21</td>
</tr>
</tbody>
</table>
Preliminary Design Analysis Cont.

• Six vs twelve south facing windows
 • Sunlight is better than artificial light
 • More sunlight means lower light usage
 • More windows increases heating and cooling loads
 • An additional six windows adds:
 • 1.5 tons (of 5.9 total) in peak cooling load
 • $78 to yearly heating and cooling bill
Recommended Design

- Single duct VAV system with seven heating and cooling zones
 - Direct expansion unit for cooling
 - Bathroom air supplied via door vents

- Hot water system
 - Condensing boiler
 - Distribution system uses primary-secondary loop and reverse return
 - All hot water pumps fitted with variable flow devices, redundant circulation pump
 - Bathrooms and entryway heated with fin tube
 - Maintenance room heated with a hydronic unit heater

- Twelve south facing windows
Environmental and Societal Impacts

- System has been made as efficient as possible to reduce carbon footprint
- Since this is a new construction, the public will not be affected or hindered by this installation
- VAV system provides better temperature control and more comfort to building occupants
- Larger number of south facing windows provides better lighting for occupants
Sustainability Evaluation

- Variable air volume system
 - Variable fan speed reduces electricity use during non-peak operation
 - Lower fan speeds increases motor life

- Pumps outfitted with variable frequency drives
 - Reduced pump speed during low demand saves electricity
 - Lower pump speeds increases pump life

- Condensing boiler reduces natural gas consumption

- Solar wall provides substantially preheated air reducing the amount of heat required from the hot water system
Cost Estimate

<table>
<thead>
<tr>
<th>Cost Estimate Summary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water side Total</td>
<td>$ 119,320.00</td>
</tr>
<tr>
<td>Air side Total</td>
<td>$ 202,969.50</td>
</tr>
<tr>
<td>Balancing Total</td>
<td>$ 26,339.50</td>
</tr>
<tr>
<td>Controls Total</td>
<td>$ 25,455.00</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$ 374,084.00</td>
</tr>
<tr>
<td>Contingency 10%</td>
<td>$ 37,408.40</td>
</tr>
<tr>
<td>Permit & Bonds 5%</td>
<td>$ 18,704.20</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$ 430,196.60</td>
</tr>
</tbody>
</table>
References

Christopher Batson – Project Sponsor

