Kinetics Study of Solid-State Oxidation and Reduction
Carl Holm, Lindsay Wendt, Konar Skindlov, Ember Drivdahl, Lauryn Palys, Caroline Pharr, * John Rowley*
Department of Chemistry and Physics, Carroll College, Helena, Montana
cholm@carroll.edu, lwendt@carroll.edu

Abstract
In this research we explore the kinetics of the oxidation of diphenylmethanol to benzophenone in the solid-state, monitored via IR spectroscopy. Solvent waste is a leading factor in the financial and environmental costs of synthetic chemistry. Solid-state reactions are of interest to the greater scientific community because they have the potential to significantly minimize solvent waste.

![Scheme 1. Solid-state oxidation and reduction reactions between diphenylmethanol and benzophenone](image)

Results And Discussion

![Figure 1. IR subtraction spectrum for the solid-state oxidation of diphenylmethanol to benzophenone. Increase in transmittance in the alcohol region (marked by x) and decrease in transmittance in the carbonyl region (marked by y) indicate the reaction is progressing.](image)

![Figure 2. Change in absorbance of the carbonyl peak as a function of time (black diamonds) plotted against first order (green), second order (yellow), 1D diffusion (blue) and nucleation (orange) rate laws.](image)

![Figure 3. IR subtraction spectrum for the solid-state reduction of benzophenone. Increase in transmittance in the carbonyl region at 1656 cm⁻¹ (marked by y) indicates a decrease in the amount of carbonyl present.](image)

![Figure 4. Change in absorbance of the carbonyl peak as a function of time (black diamonds) is plotted against first order (green), second order (yellow), 1D diffusion (blue) and nucleation (orange) rate laws.](image)

Figure 5. Stacked ¹H NMR spectrum (400 MHz, DMSO) of diphenylmethanol (top) and dibenzylmethylene oxide (bottom). Absence of H₆ suggests the presence of dibenzylmethylene oxide.

Future Work
- Identify a reagent mixture that successfully oxidizes diphenylmethanol without creating water as a byproduct.
- Optimize reaction conditions for solid-state reduction of benzophenone to diphenylmethanol
- Compare solid-state and traditional solvent based reaction kinetics mechanisms.

References

Acknowledgements
We would like to thank Caroline Pharr and John Rowley for their guidance on this project and the E.L. Wiegand Foundation for funding and resources.