Wyoming Street Hydraulic Improvements

David Keith
Carroll College, dkeith@carroll.edu

Colbey Wayne Bruney
Carroll College, cbruney@carroll.edu

Follow this and additional works at: https://scholars.carroll.edu/surf

Part of the Hydraulic Engineering Commons

Keith, David and Bruney, Colbey Wayne, "Wyoming Street Hydraulic Improvements" (2019). Carroll College Student Undergraduate Research Festival. 9.
https://scholars.carroll.edu/surf/2019/all/9

This Event is brought to you for free and open access by Carroll Scholars. It has been accepted for inclusion in Carroll College Student Undergraduate Research Festival by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
Wyoming Street
Hydraulic
Improvements

Colbey Bruney & David Ryan Keith
Introduction

❖ Wyoming Street corridor, Missoula MT
❖ Hydraulic improvements design
 ➢ 11 new tie-on locations
❖ Brownfields Site
 ➢ Former industrial site with contamination
❖ Location of a former sawmill
 ➢ Existing bio-waste
❖ Methane remediation
 ➢ Shield water system from intrusion
❖ Future design is for residential and commercial redevelopment
Existing Project Conditions and Facilities

- Existing water main: 8-inch and 10-inch ductile iron pipe (DIP)
 - Located 7-feet below Wyoming street
- Flat grassy field with sandy top soil
- Ditch running along northern quarter of site
 - Methane concentrated north of ditch
 - Methane extends 25-feet down
- Geotechnical Report filed by Tetra Tech
Design Criteria

❖ Missoula City Water Specs, AWWA, DEQ
❖ Pipe Requirements
 ➢ Class 350 Ductile Iron Pipe
 ➢ Minimum 8-inch diameter
 ➢ Minimum 12-inch commercial
❖ Pressure Requirements
 ➢ 35-to-80 psi
❖ Fire Flow/ Flow Requirements
 ➢ 1,626 gallons/minute for 2 hours
❖ Methane Intrusion
 ➢ Prevent methane intrusion
 ➢ 0.005 mg/L maximum concentration
Design Constraints

- Brownfields project status
 - No new wells
- Traffic control permitting
Summary of Preliminary Design Analysis

Flowable fill Trench Plugs

❖ Concrete backfill around pipes
 ➢ 3-feet laterally and vertically outside trench
 ➢ Sufficiently shields methane
 ➢ Installed North of Wyoming Street
 ➢ Cost effective

Cutoff Wall with Geotextile Membrane

❖ 25-foot deep cement cutoff wall
 ➢ Placed along Southern border of methane concentration
 ➢ Requires significant excavation

❖ Geomembrane liner placed against wall
❖ Sufficiently shields methane
❖ Would require
 ➢ 5000 CY of excavation
 ➢ 2500 CY of reinforced concrete
 ➢ 3750 square yards of HDPE liner

❖ No cost alternative was made for the cutoff wall due to constructability and cost issues.
Design Alternative (pipes)

Pipe Size Options

- 8 inch
 - Satisfies flow demands
 - Not cost effective

- 10, 8, 6 inch combo
 - Satisfies flow demands
 - Cost effective
 - Design approved by Missoula city Water
Recommended Alternative Description

❖ Mixed 10, 8, and 6-inch DIP
 ➢ Satisfies fire flow requirements
 ➢ Approved by Missoula City Water
 ➢ Cheapest pipe option

❖ Flowable fill trench plugs
 ➢ Sufficient protection against methane intrusion
 ➢ Cheapest option
 ➢ Ease of constructability
Technical Evaluation

- System Modeled in EPANET
- Models future development flow requirements
 - Verifies pipe size functionality
- Ran a model for each pipe size alternative

Input
- Pipe properties: diameter, length, Friction Coefficient.
- Water demand

Output
- Pipe flows: sum of all flow equals zero
- Node pressures: system pressure is approximately 70 psi.

- Flowable backfill trench plug mix design in accordance with ASTM D4380.
Cost Evaluation

Pipe Alternatives

<table>
<thead>
<tr>
<th></th>
<th>8” DIP</th>
<th>Mixed DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$202,289</td>
<td>$199,839</td>
</tr>
</tbody>
</table>

Methane Alternatives

<table>
<thead>
<tr>
<th>Item Num</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water Main Trench Plug</td>
<td>6 EA</td>
<td></td>
<td>800</td>
<td>4,800.00</td>
</tr>
</tbody>
</table>

- No cost alternative was made for the cutoff wall due to constructability and cost issues.
 - 5000 CY of excavation
 - 2500 CY of reinforced concrete
 - 3750 square yards of HDPE liner
Environmental and Societal Impacts

Benefits

❖ Shield methane intrusion
 ➢ Clean drinking water
❖ 11 new tie-in locations
 ➢ Allows future development

Negative Impacts

❖ Dust* and noise pollution
❖ Significant traffic control needed
 ➢ Wyoming Street is an arterial route
 ➢ Construction inhibits baseball park access

*Dust pollution will be controlled with water as stipulated by the Montana DEQ
Sustainable Options

❖ Flowable Backfill Trench Plugs provide sustainability
 ➢ Alternative to crushed aggregate course backfill
 ➢ Surrounds pipe with concrete
 ➢ Prevents rust
 ➢ Shields against methane intrusion

❖ Strict Missoula City standards restrict design options
 ➢ Regulated by city and state organizations
Conclusion

Questions?