The Effect of PKC 5 Inhibitors on PMA-induced Apoptosis in Xenopus laevis Splenocytes

Annie Crater

Carroll College, Helena, MT

Follow this and additional works at: https://scholars.carroll.edu/lifesci_theses

Part of the Cancer Biology Commons, Cell Biology Commons, and the Molecular Biology Commons

Recommended Citation
Crater, Annie, "The Effect of PKC 5 Inhibitors on PMA-induced Apoptosis in Xenopus laevis Splenocytes" (2003). Life and Environmental Sciences Undergraduate Theses. 236.
https://scholars.carroll.edu/lifesci_theses/236

This Thesis is brought to you for free and open access by the Life and Environmental Sciences at Carroll Scholars. It has been accepted for inclusion in Life and Environmental Sciences Undergraduate Theses by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
The Effect of PKC δ Inhibitors on PMA-induced Apoptosis in \textit{Xenopus laevis} Splenocytes

Submitted in Partial Fulfillment of the Requirements for Graduation With Honors to the Department of Natural Sciences at Carroll College, Helena, Montana

Annie Rae Crater
April 7, 2003
This thesis for honors recognition has been approved for the Department of Natural Sciences by:

Dr. Gerald Shields
Thesis Director

Dr. Grant Hokit
Reader

Dr. Ron Wilde
Reader

April 7, 2003
Acknowledgements

I would like to extend my deepest gratitude to Dr. Larry Ruben for co-
synthesizing a creative, unique research project on my behalf. Larry’s enthusiasm for
immunological studies is contagious and I am truly thankful for the knowledge and
friendship he has extended to me. Likewise, I thank Rachel O. Johnson for instructing
me on numerous procedural designs and lab protocols. Her patience and good humor
allowed me to accept procedural setbacks and continue my project with confidence. I am
also indebted to Rachel Mills, an expert on chemilluminescence, who helped me obtain
remarkable Western blot results. With their guidance and expertise, I have been able to
complete this research endeavor.

Also, Dr. Gerald Shields provided valuable input on the written portion of my
thesis, for which I am grateful. Serving as an extraordinarily dedicated thesis advisor, Dr.
Shields has devoted many weekend and holiday hours editing my thesis. I would also
like to thank my readers, Dr. Grant Hokit and Dr. Ron Wilde, for improving my thesis on
such short notice.

Additionally, I would like to recognize my family and friends for their support
and encouragement on this project and life in general. Specifically, I would like to thank
my father, whose faith in my abilities has never dwindled, even when I had my own
doubts.

Lastly, I thank Reed College and the American Heart Association for providing
lab facilities and a stipend for my research endeavors. Their gracious financial support
made it possible for me to pursue this thesis project.
Abstract

Protein kinase C (PKC) controls apoptosis in amphibian systems such as that of the South African clawed frog, *Xenopus laevis*. The effects of cancer inducing agents like phorbol 12-myristate 13-acetate (PMA) when combined with Ca$^{2+}$ independent PKC inhibitors on programmed cell death were studied in *X. laevis* splenocytes. Regulation of PMA-activated cells was observed via Annexin V-FITC and propidium iodide assays, flow cytometry, and Western blot analysis. Results indicate the PKC inhibitors reduced both apoptosis and cell growth in PMA-stimulated *X. laevis* splenocytes compared to PMA alone. These results are valuable to future mammalian cancer research. By identifying the various apoptotic mechanisms utilized by amphibian cells, researchers may become more informed regarding amphibians’ increased resistance to cancer and apply such knowledge to mammalian systems.
Table of Contents

Acknowledgements ... iii
Abstract .. iv
List of Figures .. vi
Introduction ..
 Importance of Apoptosis ... 1
 Role of Protein Kinase C (Effects of Activation/Inhibition) ... 3
 Xenopus laevis and Apoptosis ... 5
Materials & Methods ... 7
 Laboratory Animals ... 7
 Splenocyte Cultures ... 7
 Treatment Cultures ... 8
 Western Blot Analysis ... 8
 Annexin V-FITC and Propidium Iodide Assays ... 9
 Flow Cytometry .. 9
 Statistical Analysis of Proliferation Assays ... 10
Results ..
 Western Blotting & Chemiluminescence ... 11
 Annexin V-FITC & Propidium Iodide Staining ... 11
Discussion ... 16
 GF109203X .. 16
 Cycloheximide ... 16
 Rottlerin ... 17
 Future Cancer Treatments ... 18
Literature Cited ... 19
List of Figures

Figure 1: Anti-PKC δ 80 Da Western Blot Protein Band .. 11
Figure 2: Annexin V-FITC Bit Maps .. 12
Figure 3: Effect of Cycloheximide & PMA on Early Apoptosis in *X. laevis* Splenocytes 13
Figure 4: Flow Cytometry Bit Maps .. 14
Figure 5: Effect of Cycloheximide & PMA on Enlarged Cells of *X. laevis* 15
Introduction

Importance of Apoptosis

Cell death, a normal physiological immune response, can be categorized into two distinct processes: necrosis and apoptosis. Necrosis, induced by chemical contamination, causes cellular inflammation and subsequent rupturing, infecting the surrounding medium with potentially harmful agents (Murphy et al., 1990). In contrast, apoptosis, a nontoxic form of cell death, involves the phagocytic digestion of chemically tagged cells before they burst, disrupting neighboring cells (Pucci et al., 2000). Distinguishing features associated with the apoptotic process include blebbing of the plasma membrane as well as DNA fragmentation (Duke et al., 1996). As a whole, it is logical to assume that apoptosis is essential to the following cell functions: tissue homeostasis, removal of abnormal or cancerous cells, and protection from genetic errors inherent in development. Therefore, apoptosis plays a fundamental role in the regulation of the immune system. In fact, Duke et al. (1996) acknowledge that ineffective T-cells, those that lose the ability to locate and destroy foreign antigens, are eliminated via apoptotic means. With physiological processes contingent on apoptosis, particularly with regard to pathogenesis, it is imperative to understand the cellular aspects of programmed cell death.

Because apoptosis is vital to tissue homeostasis, it becomes prudent to understand apoptotic effects at the level of the cell cycle. While the cell cycle involves both DNA synthesis (S-phase) and the separation of two identical daughter cells (mitosis), the regulation “checkpoints” involved in the process are still unclear. It is known that growth factors are required for cells to progress to the next checkpoint; however, researchers note that the absence of growth factors does not always guarantee an arrest in the cycle.
(Kroemer et al., 1995). According to Kroemer et al. (1995), proteins involved in the cell cycle influence the sensitization of cells to apoptosis. By increasing or decreasing apoptotic susceptibility, proteins can directly affect the fate of a cell. Comparably, cell cycle manipulations have led to the presence or lack of apoptosis in some mammalian lymphocytes (Kroemer et al., 1995).

Activation and inactivation of particular serine-threonine kinases, Cdns, regulate the cell cycle process (Lodish et al., 1999). Because Cdns have been implicated in cell cycle control, it is reasonable to predict that they also serve an important role in apoptosis and cell proliferation. Indeed, studies involving mammalian thymocytes have indicated that apoptotic mechanisms and cell growth factors are both positively regulated by Cdk2 (Gil-Gomez et al., 1998).

Due to the overall complexity of biological processes, it is logical to assume that the cell cycle is influenced by a multitude of contributory factors. For instance, Kong et al. (2000) discovered that the cell cycle is not only regulated by Cdns, it is also controlled by genetic components that additionally affect apoptosis. Researchers found that the Myc transcription factor, a product of the c-myc proto-oncogene, is involved in growth arrest of the cell cycle (Kong et al., 2000). Others have observed the role of Myc in inducing cellular apoptosis as well (Pucci et al., 2000). Pucci et al. (2000) postulate that the apoptotic condition is a default response in lieu of cellular proliferation. However, extensive research concerning apoptosis and the cell cycle is limited. Additional cell proliferation assays are needed to advance understanding of programmed cell death with regard to cellular growth.
Dysfunction of normal apoptotic mechanisms can lead to disease and ultimate death of the cell (Duke et al., 1996). Presumably, variable apoptotic rates may influence both immune system response and tissue balance. For example, excessive apoptosis in helper T lymphocytes in the case of AIDS or the degeneration of neurons with respect to dementia are both examples of the impact of apoptosis on immunological functions (Duke et al., 1996). In general, immune deficiencies associated with programmed cell death may be attributed to extreme apoptotic conditions. Contrary to the aforementioned case, other forms of affliction, including cancer, are the result of the cell’s failure to induce apoptosis, allowing metastasis to occur (Duke et al., 1996). Researchers acknowledge that current cancer treatments, like tamoxifen, impede cell cycle associated proteins and ultimately alter apoptotic functions (Duke et al., 1996). However, the exact mechanisms cancer drugs utilize in apoptotic pathways are still unexplained. By focusing present immunological research efforts on apoptotic mechanisms, breakthroughs in cancer treatments may occur.

Role of Protein Kinase C (Effects of Activation/Inhibition)

To discern the exact relationship between apoptosis and malignancy, cellular components affecting apoptotic processes are studied. Phosphorylating enzymes, or kinases, have been found to play an integral role in transmembrane signaling (Lodish et al., 1999). Generally, the process of phosphorylation changes a protein’s charge and thus, ultimately influences the enzymatic activity of the intended protein. Specifically, apoptotic regulation is mediated by a specific serine-threonine kinase known as protein kinase C, or PKC (Dekker and Parker, 1994). PKC is composed of eleven closely related isoforms, classified according to their calcium dependency. The Ca^{2+} dependent
isoforms, including α and β, rely on the calcium cation for enzymatic activity (Dekker and Parker, 1994). Unlike the Ca$^{2+}$ dependent isoforms, PKC δ and ε do not require calcium to sustain cellular activities (Dekker and Parker, 1994). The differential Ca$^{2+}$ dependency may suggest that the distinct isoforms maintain unique functions within the cell; however, inadequate supportive evidence requires further research to substantiate such claims.

In addition, the aforementioned PKC isoforms are selectively activated by certain phorbol esters. One such ester, phorbol 12-myristate 13-acetate (PMA), selectively activates the following PKC isoforms: α, β, δ, and ε. PMA has been shown to cause a cytoprotective effect in most organisms (Gomez-Angelats et al., 2000). For instance, mammalian studies indicate that the inhibition of PKC α and β plays a fundamental role in the failure of PMA to induce apoptosis (Gomez-Angelats et al., 1999).

While PKC α and β are associated with anti-apoptotic activity, PKC δ maintains a pro-apoptotic function in both mammalian and amphibian cells (Fujii et al., 2000). Fujii et al. (2000) have indicated that PKC δ increases apoptosis in malignant human prostate cells. It is assumed that the resultant apoptotic rise is correlated with a reduction in neoplastic transformation or cancer incidence.

With implications of PKC δ’s importance in apoptosis, it is imperative to explore the ways in which inhibitory compounds affect such a process. One such inhibitor, GF109203X (GF), suppresses PKC α, β, δ, and ε (McMahan et al., 1999). Counteracting the effects of PMA, GF provides valuable insight to quantifying the true connection between apoptosis and cell proliferation.
Likewise, cycloheximide has been known to prevent the synthesis of pro-apoptotic proteins and, consequently, suppress apoptosis (Murphy et al., 1990). However, others implicate cycloheximide in the synthesis of anti-apoptotic proteins, decreasing apoptotic rates (Ruben et al., 2000).

Another PKC δ inhibitor, rottlerin, also inhibits apoptotic activity (Lu et al., 1997). According to Lu et al. (1997), when rat fibroblasts are treated with rottlerin, cellular metastasis occurs. Therefore, the researchers implicate PKC δ serving an integral role in pro-apoptotic functioning.

Interestingly, Ruben et al. (2000) contend that the individual inhibitors, GF, cycloheximide, and rottlerin, induce apoptosis on their own, but when combined with an activator they exhibit inhibition. Coupling an activator, such as PMA, to various PKC δ suppressors allows researchers to decipher PMA’s collective effect on programmed cell death as well as cellular growth.

Xenopus laevis and Apoptosis

Previous scientific data show that amphibian cells have an increased susceptibility to apoptosis and a decreased vulnerability to cancer. When injected with cancer-inducing endogens, the frequency of neoplastic transformation in the South African clawed frog, *Xenopus laevis*, is significantly low (Clothier et al., 1989). Additionally, Ruben et al. (2000) proposed that *Xenopus* splenocytes are, in fact, “exquisitely sensitive to reagents that affect PKC activity.”

Though mammals and amphibians may hold differential susceptibilities to PKC δ inhibitors, such as cycloheximide and rottlerin, it is likely that the general apoptotic components of each organism are evolutionarily conserved (McMahan et al., 1999).
Thus, it is advantageous to compare both the mammalian and amphibian immune systems with regard to apoptosis. In particular, differences in PMA-induced apoptosis suggest variable pathways for programmed cell death in mammals and *X. laevis* (Ruben *et al.*, 2000).

While the cancer connection to apoptosis is highly researched via individual PKC δ activators and inhibitors, scientists have yet to evaluate cell growth within the context of programmed cell death. It is presumed that cell proliferation decreases as apoptosis increases. But, the exact relationship between cell growth and apoptosis has yet to be characterized.

Therefore, a potential key to understanding the amphibian resistance to cancer may lie in determining the influence of PMA on both apoptotic mechanisms and cellular growth. While the next logical step in solving the apoptotic puzzle is to determine the exact relationship between PKC δ stimulators, suppressors, and their collective effect on programmed cell death, before such experiments are implemented, it is essential to review the precise role of PMA in apoptosis and cell proliferation. Based on the aforementioned research, I specifically hypothesized that the phorbol ester, PMA, will exclusively affect either apoptosis or cell growth in *X. laevis* splenocytes. Particularly, I predicted that cell proliferation decreases as apoptosis increases.
Materials & Methods

Laboratory Animals

The South African clawed frog was utilized for all experimental assays. All *X. laevis* were reared in 100 gallon stock containers (25 *X. laevis*/container) filled halfway with oxygenated de-ionized water at 23 °C. In addition, each container was fitted with a rudimentary mesh screen to prevent escape. The toads were fed frog brittle (NASCO, Oshkosh, WI) and kept in accordance with the NIH guidelines for the Care of Vertebrate Experimental Animals.

Splenocyte Cultures

Randomly chosen adult *X. laevis* were submerged in KMnO₄ solution (15 minutes) for sterilization purposes. Anesthetization of the animals in MS-222 for five to ten minutes ensued. Prior to anesthetization, MS-222, composed of 1.34 g ethyl-m-aminobenzoate in 100 mL nanopure water, was stored at -20 °C (Fisher Scientific, Pittsburgh, PA). Sterile technique was then followed to extract *X. laevis* spleens. The extracted spleens were placed in 3 mL of culture medium comprised of one package Leibovitz L-15 medium (Sigma, St. Louis, MO), 0.021 g streptomycin, 0.055 g penicillin, 2.97 g Hepes powder in 1.5 L nanopure water, and 10% fetal bovine serum at pH 7.4 (Thronson, 2001). The frog splenocytes were subsequently dissected with sterile forceps, suspended in 15 mL centrifuge tubes, and centrifuged at 700 x g for 5 minutes. Upon removal of the supernatant, which consisted of cellular debris, the splenocytes were resuspended in 1 mL of the aforementioned culture medium. A hemocytometer was then utilized for cell counts of 15 μL aliquots. Once counted, the splenocyte suspensions were adjusted to a concentration of 10⁶ cells per mL. One hundred μL of cell suspension
combined with 100 μL of control medium or treatment were pipetted into individual wells of a 96-well round-bottom plate and cultured for 72 hours.

Treatment Cultures

PMA treatment wells were maintained at a concentration of 50 ng/mL [1 mg/mL PMA in DMSO stock solution, diluted with L-15 culture medium (Thronson, 2001)]. In-well concentrations of rottlerin treatments were 0.1 μg/mL (+/- PMA), 0.5 μg/mL (+/- PMA), 1 μg/mL (+/- PMA), 2 μg/mL (+/- PMA), and 4 μg/mL (+/- PMA). Finally, cycloheximide treatments were prepared at concentrations of 7 ng/mL (+/- PMA) and 10 ng/mL (+/- PMA).

Western Blot Analysis

According to Pierce’s (Rockford, IL) protocol, the NE-PER extraction kit was used to prepare nuclear and cytoplasmic extracts, which were stored at -20 °C in 15 μL aliquots.

Each lane of a 10% SDS-polyacrylamide mini gel (BioRad, Hercules, CA) was loaded with 15 μL of extract. One lane contained a BioRad kaleidoscope molecular marker. Electrophoresis of the samples ensued for 1 hour at 100 V.

Proteins in the gel were then transferred to nitrocellulose or PVDF membrane (BioRad, Hercules, CA) for 1 hour at 52-72 V. The PVDF membrane was stained in Ponceau S. A solution of 1X TBS with 5% non-fat dried milk (BioRad, Hercules, CA) was used to rinse and block the membrane for 24 hours. The membrane was rocked and kept at 4 °C for the duration of the blocking. After rinsing 3 times in TTBS (1X TBS, 0.05% TWEEN 20), the membrane was incubated at room temperature for 1 hour in a concentration of primary antibody ranging from 1.6-6.6 μg/mL. Again, the membrane
was rinsed 3 times with TTBS and incubated at room temperature for 1 hour in horseradish peroxidase-conjugated secondary antibody (Santa Cruz, Santa Cruz, CA). TTBS was then used to wash the membrane once for 15 minutes, once for 10 minutes, and twice for 5 minutes. Finally, the membrane was saturated with 4 mL chemilluminescence reagent (NEN Life Science Products, Boston, MA) for 1 min, allowed to dry, and exposed to Kodak Bio-Max X-Ray film in the dark.

Annexin V-FITC and Propidium Iodide Assays

Cell treatments were transferred from the round-bottom well plate, following culture, to Eppendorf tubes containing 10 μL Media Binding Reagent and 1.25 μL Annexin V-FITC. Individual samples were placed in the dark for 15 minutes at room temperature to incubate. After incubation, the tubes were centrifuged at 1000 x g for 5 minutes and the pellet was resuspended in 0.5 mL cold 1X Binding Buffer along with 10 μL propidium iodide, PI. All samples were iced until further analysis by flow cytometry. All reagents used for the apoptosis and proliferation assays comprised the Annexin V-FITC Apoptosis Detection Kit (Oncogene Research Products, Cambridge, MA).

To quantify the staining of each cell treatment, fluorescence of Annexin V-FITC at 518 nm and PI signals of 620 nm were used. Ten thousand total gated events were counted for each treatment and control group.

Flow Cytometry

A flow cytometer utilizing an argon ion laser light with a wavelength of 488 nm was used to quantify the Annexin V-FITC and PI assays. Oregon Health Sciences University (Portland, OR) performed all flow cytometry assays.
Statistical Analysis of Proliferation Assays

Significance of treatment effects was determined by analyses of variances (ANOVAs). Confidence intervals of 95% correspond to error bars. A 5% confidence interval (p < 0.05) indicates statistical significance between treatments. StatView 5.0 (Abacus Concepts, Palo Alto, CA) was used for all statistical analyses.
Results

Western Blotting & Chemilluminescence

The units of the standard for the Western blot are 42 kDa. The Western blot performed on *X. laevis* splenocytes shows a clear protein band present at 80 Da (Figure 1). When PKC is activated by PMA alone, the protein band is absent. However, when combined with GF, an inhibitor of PKC α, β, δ, and ε, PMA exhibits the 80 Da band.

<table>
<thead>
<tr>
<th>Standard</th>
<th>L-15</th>
<th>PMA</th>
<th>GF</th>
<th>PMA + GF</th>
</tr>
</thead>
</table>

Figure 1: Anti-PKC δ 80 Da Western Blot Protein Band

Annexin V-FITC & Propidium Iodide Staining

The following Annexin V-FITC bit maps indicate a statistically significant decrease in the number of cells gated in late apoptosis for PMA activated treatments (Figure 2). When compared to the control in Figure 2, PMA alone decreased late apoptosis by 1.73%. In addition, early apoptosis increased 16.55%. Additional treatments such as PMA + cycloheximide (CHX) and PMA + rottlerin (ROTT) also illustrate the trend associated with PMA exposure.
A. Control
B. PMA
C. CHX
D. CHX + PMA
E. ROTT
F. ROTT + PMA

Figure 2: Annexin V-FITC Bit Maps

Analyses of Variances (ANOVA)s were performed on the Annexin V-FITC and PI results. As illustrated in Figure 3, when compared to the control, PMA shows statistical significance with a p-value < 0.0001. Similarly, compared to PMA alone, both CHX and PMA + CHX treatments maintain statistical significance (p-value < 0.0001).
Figure 3: Effect of Cycloheximide & PMA on Early Apoptosis in X. laevis Splenocytes

Flow Cytometry

Figure 4 displays the resultant flow cytometry bit maps. The number of enlarged cells is denoted by the R3 gated region for each treatment condition. The effect of cycloheximide and PMA on enlarged X. laevis splenocytes is shown in Figure 5.

Statistically significant treatments include the following: PMA when compared to the control group (p-value = 0.0013), PMA in contrast to CHX (p-value = 0.0002), and PMA alone compared to the PMA + CHX combination (p-value = 0.0348).
Figure 4: Flow Cytometry Bit Maps
Figure 5: Effect of Cycloheximide & PMA on Enlarged Cells of *X. laevis*

The PKC δ inhibitor, rottlerin, produced identical Annexin V-FITC, PI, and flow cytometry results. Statistical significance was computed at p-values < 0.0001 for the same treatment conditions as CHX.
Discussion

GF109203X

Western blot analysis substantially reinforces the aforementioned apoptotic trend (Figure 1). Interestingly, GF alone produces an 80 Da protein band. Yet, when combined with PMA, the protein band is no longer visible. Based on the Western blot results, GF, a general PKC inhibitor, may be utilizing a separate apoptotic pathway from PMA. However, even though these findings indicate that inhibitors, such as GF, fail to involve PKC in their respective apoptotic pathways, data obtained from Annexin V-FITC bit maps suggest otherwise (Figure 2). Indeed, the results indicate a reliance of the various inhibitors on PKC-dependent apoptotic pathways.

Cycloheximide

The statistical significance (p<0.0001) of cycloheximide treatments when compared to controls suggests the reagent’s inherent role in PMA-induced apoptosis. An inhibitor of PKC δ and ε, cycloheximide has previously been shown to increase apoptotic rates in mammalian B-lymphocytes (Lu et al., 1997). Similarly, X. laevis splenocytes treated with the reagent generate comparable results.

Alternatively, studies conducted by Murphy et al. (1990) support the reagent’s ability to suppress apoptosis. The drastic difference in reported results may be attributed to the dose-dependent nature of cycloheximide. Thronson (2001) demonstrates that cycloheximide concentrations greater than 10 ng/mL induce apoptosis while concentrations significantly below this value inconclusively suggest neither pro-apoptotic nor anti-apoptotic trends.
Moreover, as illustrated in Figure 2, cycloheximide stimulates considerably more late apoptosis than PMA alone. Although cycloheximide inhibits PMA induced early apoptosis, at the same time, PMA appears to “protect” cells from cycloheximide induced late apoptosis. Overall, the resultant combination of PMA + CHX reduces apoptosis in *X. laevis* splenocytes.

Comparably, Figure 4 shows a significant increase in the number of enlarged cells for PMA treatments when compared to the control. However, the cellular growth inherent in the PKC δ activator’s treatment seems to be alternatively affected by the addition of cycloheximide. The reversal in cell proliferation is a clear result of the combined PKC δ activator and suppressor treatment. Because the response in early apoptosis and the number of enlarged cells to PMA and PMA plus a PKC δ inhibitor is similar, apoptosis and cell growth appear to be positively correlated. Therefore, I reject my original hypothesis due to the fact that when PMA is suppressed with either cycloheximide or rottlerin, both cell growth and apoptosis are blocked.

Rottlerin

Studies of cycloheximide and rottlerin have shown that rottlerin’s effect on PKC δ is directly implicated in pro-apoptotic pathways (Lu *et al.*, 1997). Others have also supported the role rottlerin plays in increasing cell death by researching high PKC activity of *X. laevis* splenocytes (Ruben *et al.*, 2000).

As Figure 2 suggests, rottlerin does indeed play a substantial role in PMA-induced apoptosis. Similar to cycloheximide, rottlerin displays considerably more late apoptosis compared to PMA alone. Because PMA stimulates significantly more early apoptosis while rottlerin primarily stimulates late apoptosis, this differential apoptotic
selection may be the key to understanding the uncertain phenomenon when the two are combined. Again, the combination of PMA and a PKC δ inhibitor seems to produce identical results: PMA reduces rottlerin’s ability to stimulate late apoptosis while rottlerin inhibits PMA’s early apoptotic effects.

With regard to cell growth, rottlerin combined with PMA induces a similar decrease in the number of enlarged cells as the CHX + PMA treatment (Figure 4). Thus, in X. laevis splenocytes, PMA activates both cell growth and apoptosis. An explanation for the aforementioned contradictory findings may be that individual cells respond to PMA differently depending on their location in the cell cycle. Additionally, a cell’s general physiological state might contribute to the observed response.

Future Cancer Treatments

Mammalian cancer research may benefit from analogous X. laevis PKC data by focusing on the differential apoptotic mechanisms utilized by amphibian cells. This regulation of both programmed cell death and proliferation through PKC is the fundamental barrier blocking current understanding of neoplastic transformations. When cancer-inducing agents, such as PMA, are introduced to X. laevis splenocytes, both apoptosis and cell growth increase. Therefore, creating an experiment to identify the various cellular mechanisms contributing to the observed amphibian cancer-resistance would prove beneficial to mammalian cancer studies.

Thronson, LR. 2001. Protein kinase C in apoptosis and cell growth in *Xenopus laevis* Splenocytes. Reed College Press.