Apr 25th, 2:45 PM - 3:45 PM

Effects of \(\beta\)-Methylamino-L-Alanine (BMAA) on LC4A Expression and Growth of Tetrahymena thermophila

Mackenna Landis
mlandis@carroll.edu

Audrey Yaeger
Carroll College, ayaeger@carroll.edu

Follow this and additional works at: https://scholars.carroll.edu/surf

Part of the Biology Commons

Landis, Mackenna and Yaeger, Audrey, "Effects of \(\beta\)-Methylamino-L-Alanine (BMAA) on LC4A Expression and Growth of Tetrahymena thermophila" (2019). Carroll College Student Undergraduate Research Festival. 31.
https://scholars.carroll.edu/surf/2019/all/31

This Event is brought to you for free and open access by Carroll Scholars. It has been accepted for inclusion in Carroll College Student Undergraduate Research Festival by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
Effects of β-Methylamino-L-Alanine (BMAA) on LC4A Expression and Growth of Tetrahymena thermophila

Audrey Yaeger and Mackenna Landis
Department of Biology, Carroll College

Introduction
- The unicellular, eukaryotic ciliate Tetrahymena thermophila (T. thermophila) is a popular model organism in molecular biology.
- It has been proposed that β-Methylamino-L-alanine (BMAA), a non-proteinogenic amino acid secreted by Cyanobacteria, is a hyper-excitatory neurotoxin.
- If hyper-excitation of cells were to occur, a strong influx of calcium ions would induce unregulated cell signaling, which would need to be modulated by a Calmodulin protein in order to rescue homeostatic cell processes and prevent cell death.
- LC4A is a calmodulin homolog which sequesters calcium ions.
- Hypothesis: It is hypothesized that presence of BMAA in the media will decrease Tetrahymena thermophila growth and increase LC4A expression in order to help regulate calcium ion concentrations within the cell.

Methods
- Primer synthesis: Primers for LC4A were designed using Oligoanalyzer software.
- Culturing: T. thermophila cultures were maintained in NEFF media. Upon experimentation, all cultures were transferred into SPP media and experimental cultures were exposed to a single three-day dose of 1.0 mM BMAA.
- RNA extraction: RNA was extracted using Qiagen’s RNeasy Mini Kit.
- Reverse transcription: cDNA was synthesized using RevertAid.
- Quantitative PCR was performed using PowerUp SYBR Master Mix. BTU1 gene expression was used as positive control.
- Cell Counts were performed with hemocytometers.

Results

Figure 1: (a.) Chemical structure of the standard amino acid L-alanine. (b.) Chemical structure of the non-proteinogenic amino acid BMAA.

Figure 2: Cyanobacteria, which naturally produces and secretes BMAA.

Figure 3: Fold change in expression of LC4A. (p=0.332; n = 4 for each group).

Figure 4: Number of cells per milliliter of media, averaged between round 1 and round 2. (Day 1: p=0.346; Day 2: p=0.189; Day 3: p=0.245, n = 4 for each group).

Figure 5: Image of T. thermophila on a hemocytometer under a microscope.

Conclusion
- Cell counts were inconclusive, but overall, T. thermophila treated with BMAA were more abundant than the control cells.
- Both rounds of quantitative PCR demonstrated that BMAA exposure resulted in no major change in the expression of LC4A.
- There was an increase in fold change in expression of LC4A, as shown in Figure 3, but it was not statistically significant (p=0.332).
- The results disagree with our hypothesis regarding both gene expression and cell growth.

References

Acknowledgements
We would like to thank our faculty advisor, Dr. Stefanie Otto-Hitt for her superb guidance throughout this process. This project was funded in part by a supplies grant from the Ciliate Genomics Consortium.