Effect of Lead Exposure on Drosophila melanogaster and expression of the Neru gene

Vanessa Rodriguez
vrodriguez@carroll.edu

Michael Larsen
mlarsen@carroll.edu

Follow this and additional works at: https://scholars.carroll.edu/surf

Part of the Developmental Biology Commons, and the Molecular and Cellular Neuroscience Commons

https://scholars.carroll.edu/surf/2019/all/68

This Event is brought to you for free and open access by Carroll Scholars. It has been accepted for inclusion in Carroll College Student Undergraduate Research Festival by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
Effect of Lead Exposure on *Drosophila melanogaster* and expression of the *Neur* gene

Vanessa Rodriguez and Michael Larsen
Department of Biology, Carroll College

Introduction
- *Drosophila melanogaster* (D. *melanogaster*) is a popular model organism in biology.
- *Nerualized* (*Neur*) is a gene responsible for the regulation of cell-cell interactions of organ development and cell reproduction.
- Lead Acetate is a toxin found in everyday products and primary water sources whose secondary effects are unknown.
- **Hypothesis:** If *D. melanogaster* was exposed to a concentration of 39µg/L of lead acetate then the expression of *Neur* would decrease along with larvae crawling mobility.

Results

Acknowledgements
We would like to thank our faculty advisor, Dr. Stefanie Otto-Hitt for her superb guidance throughout this process.

Conclusion
- The Behavior assay proved significant in that Lead affected mobility as seen in Rd 2 with a *P*-value of 2.158E-05.
- Both qPCR rounds demonstrated that Lead exposure had no significant effect on the expression of *Neur* as seen in Figure 4.
- There was a slight decrease in mobility in *D. melanogaster* that were treated with lead as seen in Figure 3.
- The results disagreed with our hypothesis on gene expression, but agreed with our hypothesis for larvae crawling.

Methods
- **Primer synthesis:** Primers for *Neur* were designed using IDT Oligoanalyzer software.
- **Culturing:** *D. melanogaster* cultures were maintained by adding 10mL of potato flakes, along with 39µg/L of lead or sodium acetate solution and 6-7 grams of yeast to a culture vial. Cultures were maintained at 23°C for the treatment period. Both experimental and control groups underwent a total of 13 days of exposure before testing occurred.
- **RNA extraction:** RNA was extracted using Trizol and purified using Qiagen’s RNeasy Mini Kit.
- **Reverse transcription:** cDNA was synthesized using RevertAid.
- **qPCR** was performed using PowerUp SyBr Master Mix and primers targeting *GAPDH* and *Neur* (*n=2* cultures for each group; total of 4 cultures tested).
- **Behavior Assay:** Larval crawling was measured by placing larvae on an agar plate and timing them for a minute to determine the distance traveled (*n=10* for each round for each culture tube).

References:

Figure 1: Larvae on an agar plate before mobility assay

Figure 2: Larvae undergoing mobility assay which is measured by number of squares crawled in one minute.

Figure 3: Experiment round 1 and 2 average crawling after 1 minute. Error bars represent the Standard Deviation of the means (*P*=20 for Rd 1 exposure and *P*= 2.158E-05 for Rd 2 exposure)

Figure 4: Relative expression of *Neur* in Sodium Acetate and Lead Acetate-exposed *Drosophila*. (*P*=0.38)