Effect of Potassium Bromate on OXR1 Gene Expression and Cell Growth in Tetrahymena thermophila

Brendan McMahon
bjmcmahon@carroll.edu

Scott Kahle
skahle@carroll.edu

Follow this and additional works at: https://scholars.carroll.edu/surf
Part of the Microbiology Commons, and the Molecular Biology Commons

https://scholars.carroll.edu/surf/2018/all/48

This Event is brought to you for free and open access by Carroll Scholars. It has been accepted for inclusion in Carroll College Student Undergraduate Research Festival by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
Effect of Potassium Bromate on *OXR1* Gene Expression and Cell Growth in *Tetrahymena thermophila*

Scott Kahle and Brendan McMahon
Department of Biology, Carroll College

Introduction

- The unicellular, eukaryotic ciliate *Tetrahymena thermophila* (*T. thermophila*) is a useful model organism in molecular biology.
- The protein encoded by *OXR1* is required to prevent oxidative damage resulting from energy production.
- Potassium Bromate (*KBrO₃*) is a strong oxidizing agent that is used as a leavening agent in baked goods.
- Previous studies have shown that *KBrO₃* is toxic to living organisms.

Hypothesis: If *Tetrahymena* are exposed to *KBrO₃* in their environment, oxidative damage will be induced and, as a result, expression of *OXR1* will increase while cell growth rate decreases.

Methods

- **Primer synthesis:** IDT software was used to design primers for the *OXR1* gene.
- **Culturing:** *T. thermophila* cultures were maintained in NEFF media. During treatment, experimental cultures were transferred to culture dishes with SPP media containing 0.5mM *KBrO₃*. Control cultures were grown in pure SPP media.
- **RNA extraction:** RNA was extracted using Qiagen’s RNeasy Mini Kit.
- **Reverse transcription:** RevertAid was used to synthesize cDNA from extracted mRNA.
- **PCR** was performed using GoTaq master mix, and *BTU1* gene expression was used as a positive control.
- **Gel electrophoresis** was performed on RT-PCR reactions. Relative PCR signal intensities were analyzed using ImageJ.
- **Cell growth rate** was determined by counting cell number with a hemocytometer twice a day over a 72 hour period.

Results

- **Figure 1:** Round 1 *OXR1* PCRs. Both control (lanes 3-4) and experimental (lanes 5-6) groups show *OXR1* expression.
- **Figure 2:** Round 1 *BTU1* PCRs. Three control (top) groups show *BTU1* expression, while negative controls do not.
- **Figure 3:** Round 2 *OXR1* PCRs. The control (lanes 3-4), one experimental (5) and three negative control groups show (b) *OXR1* expression.
- **Figure 4:** Round 2 *BTU1* PCRs. Three positive controls (top) and all negative controls (bottom) show *BTU1* expression.
- **Figure 5:** Growth curve of control and *KBrO₃* treated *Tetrahymena* cultures measured over a 72 hour period. From 0-72hrs, p-values: 1.097 0.71, 0.18, 0.56, 0.38, 0.80
- **Figure 6:** Image of *Tetrahymena* cells fixed in glutaraldehyde for counting with a hemocytometer.

Conclusions

- Both experimental trials indicated that exposure to *KBrO₃* did not induce any major change in expression of *OXR1*, as seen in Figures 1 and 3.
- There was no significant increase in the quantitative relative RT-PCR signal of *OXR1*, as shown in Figure 7 (p=0.25).
- *KBrO₃* exposure had no significant effect on cell growth as seen in Figure 5. (p-values = T0:1, T12: 0.97, T24: 0.71, T36: 0.18, T48: 0.56, T60: 0.38, T72: 0.80).
- The results disagreed with our hypothesis in regard to both gene expression and cell growth rate.
- **Future Directions:** Optimize the concentration of *KBrO₃*, and increase the number of experimental trials.

Acknowledgements

We would like to thank our faculty advisor, Dr. Stefanie Otto-Hitt for her excellent guidance throughout this experiment.