Spring 5-13-2017

A Visual Guide to General Chemistry Topics

Victoria Kong
Carroll College, Helena, MT

Follow this and additional works at: https://scholars.carroll.edu/chemphys_theses
Part of the Chemistry Commons, and the Education Commons

Recommended Citation
https://scholars.carroll.edu/chemphys_theses/3

This Thesis is brought to you for free and open access by the Chemistry and Physics at Carroll Scholars. It has been accepted for inclusion in Chemistry and Physics Undergraduate Theses by an authorized administrator of Carroll Scholars. For more information, please contact tkratz@carroll.edu.
This thesis for honors recognition has been approved for the Department of Chemistry.

Director
5/1/17
Date

Reader
5/1/2017
Date

Reader
5/1/2017
Date
Abstract

A Visual Guide to General Chemistry Topics

Using some of the most frequently asked questions during General and Essentials of Chemistry tutoring sessions, this compilation of illustrated worksheets and concept maps was assembled. Left black and white, the pages of this booklet are meant to help facilitate student interaction with their own notes, allowing them to color code, fill in, and annotate whatever they see fit. In bringing material that is typically presented to students via textbook or plain text in a way that is illustrated and creative, it helps to reach the visual side of students’ brains and allow them to see connections that they might otherwise not. The pages in this booklet are meant to be used both as standalone pages, and as a compiled book. Suggested use of the pages include “whiting out” portions of pages, allowing students to fill them in themselves, or giving the pages to students after lecture has occurred, allowing the pages to act as a visual review of important concepts. Additionally, students should be encouraged to make their own “visual notes”.
This honors thesis was created with the intent of bridging some of the fundamental concepts learned by first-semester general chemistry students with an illustrative approach. The effectiveness of using more visuals in chemical education is well documented in scientific literature1,2,3,4. In a *Journal of Chemical Education* study done by Furlan et. al. in 2007, using illustrative and artistic means to teach chemical concepts “motivated [students] to search for additional chemistry information on the topic, and increased [the students’] chemistry understanding”5.

One of the main struggles that students new to chemistry face is the visualization of small-scale interactions invisible to the human eye. This visualization of reactions between molecules and atoms make it difficult for students to apply fundamental chemical equations and theories. With this in mind, I have created each page of this thesis in an attempt to combine illustrative representations of molecular interactions and chemical processes with equations and explanations. One of the most frequently used illustrative schemes I have used is a concept map, seen on pages 5, 6, 11, 13, 14, and 17-19. The reasoning behind this decision is based not only through personal experience with the utility and effectiveness of concept maps, but also based on a study published in 2013 by Drs. Mustafa and Murset in the *International Journal on New Trends in Education and Their Implications*6. Concept maps have been proven to increase students’ ability to find new connections between concepts, increase understanding of complex material, and strengthen overall understanding of the content.

With this thesis, I hope to provide students a visual approach to learning some of the material that the General Chemistry I course teaches. The pages cover material that I frequently found myself explaining to students enrolled in both General Chemistry I and Essentials of Chemistry. The illustrations drawn, while some created specifically for this thesis, come from my own personal experience as a tutor and the images that were drawn while explaining concepts.

-Victoria Kong
Class of ‘17
Table of Contents

1. What is Chemistry?
2. Unit Conversions to Know
3. Properties of Solids, Liquids, and Gases
4-5. Liquid Properties
6. Liquids vs. Aqueous Solutions
7-8. Dissecting our Gas Laws and Variables
9. The Ideal Gas Law
10. Traits of Molecular and Ionic Compounds
11. Strong, Weak, and Non-Electrolytes
12. What is a Mole?
13. How Many Atoms are in a Compound?
14. Conversion Roadmap
15. Parts of a Periodic Table Element
16. Periodic Table Trends Overview
17-19. Explaining the Periodic Table Trends
20. References
Let's talk about what chemistry is...

As chemists, we are concerned with the identification and characterization of materials and compounds. Moreover, we are interested in how these materials interact, combine, and change.

The logic and reasoning behind these interactions can be traced back to — simple arguments of electrostatic attraction and repulsion!
For solids, liquids, and gases, there is a certain vocabulary we must use in order to describe the particle behavior.

There are macroscopic and microscopic particle behaviors.

MACROSCOPIC: large-scale particle behaviors... typically observable to the human eye.

MICROSCOPIC: small-scale particle behaviors... use your imagination!

Level of Fluidity: (also known as viscosity)
- very fluid = not viscous
 - [Image of a liquid]
 - [Image of a gas]
- not fluid = very viscous
 - [Image of a solid]

Volume
- rocks have a fixed volume. They do not fill the shape or volume of their container.
- Helium gas does not.

Shape
- My hand is a fixed shape.
- Playdough is not. Playdough assumes the shape of the container but NOT its volume.

Particles can
- touch be far apart
- collide frequently

Density (mass per volume)
- oil is less dense than water
- water is more dense than oil

Macroscopic

Microscopic

We can see these properties

We typically can't see these properties.

Kinetic energy of particles is so high that attractions are overcome.
Liquid PROPERTIES

▶ DENSITY: NOT related to intermolecular forces. WEIGHT per VOLUME

\[
\begin{align*}
5 \text{ mL of Solution A} & \quad & 5 \text{ mL of Solution B} \\
\text{Solution A} & \quad & \text{Solution B have the same volume, but Solution A is much heavier so:}
\end{align*}
\]
\[
\text{sol. A = more dense than B}
\]

▶ VISCOSITY: Resistance to flow.

AS INTERMOLECULAR FORCES INCREASES,

VISCOSITY INCREASES.

\[
\begin{align*}
\text{Water is not very viscous.} & \quad & \text{Chocolate syrup is very viscous.}
\end{align*}
\]

Chocolate syrup has particles that interact with stronger intermolecular forces. It is more viscous.

▶ SURFACE TENSION: Resistance to surface penetration.

AS INTERMOLECULAR FORCES INCREASE,

SURFACE TENSION INCREASES

\[
\begin{align*}
\text{Water droplets on a penny display the high surface tension, and thus strong intermolecular forces present between water molecules.}
\end{align*}
\]
Liquid Properties (continued)

VAPOR PRESSURE: the pressure exerted by liquid molecules in the gas phase

- **High** vapor pressures → **Weaker** intermolecular forces
 - **Lower** boiling temperatures → **Faster** evaporation rates at room temperature
 - **More** volatile

BOILING POINT: temperature at which the vapor pressure of a liquid equals the gas pressure above it

"**Normal**" BOILING POINT: temperature at which the vapor pressure of a liquid equals 760 torr (=1 atm)
Unit Conversions to Know

1 Liter =

\[1 \times 10^{-12} \text{ picoliters (p)} \]
\[1 \times 10^{-9} \text{ nanoliters (n)} \]
\[1 \times 10^{-6} \text{ microliters (\mu)} \]
\[1 \times 10^{-2} \text{ centiliters (c)} \]
\[1 \times 10^{-1} \text{ deciliters (d)} \]
\[1 \times 10^{3} \text{ kiloliters (k)} \]
\[1 \times 10^{6} \text{ megaliters (M)} \]

L = liter
m = meter
\(g = \) gram
\(M = \) mole

1 Liter = 1 dm³
1 mL = 1 cm³

\[10^3 \text{ cm}^3 = 10^3 \text{ mL} = 1 \text{ L} \]

\[1 \text{ cm}^3 \] can hold 1 mL of liquid

\(0°C \) celsius = 32°F fahrenheit = 273 Kelvin

1 inch = 2.54 cm
1 lb = 16 ounces = 454 grams
1 quart = 0.946 liters

1 atm = 760 mmHg = 760 torr
Molecular and Ionic Compounds

<table>
<thead>
<tr>
<th>Molecular</th>
<th>Ionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Molecular Diagram]</td>
<td>![Ionic Diagram]</td>
</tr>
</tbody>
</table>

Molecular
- **Covalently bound neutral atoms**
 - Electrons are shared equally
 - I'm so glad we could share! You make me complete!
- **Not good electrical conductivity**
 - Can you feel it yet?
 - "We've tried hooking our covalently bound molecules to a 50V battery. They still report no electrical current. Molecules must not be very conductive."
- **Covalent bonds are quite weak. It does not take a lot of energy to break them apart.**
 - I'm sorry Jack. There's no room. Let go of my electron!

Ionic
- **Ionically bound cations and anions**
 - Unequal sharing of electrons, in which anions "take" electrons from the cations
 - That's him, officer. He stole my electron!
 - Anions "steal" electrons
 - Cations "lose" electrons
- **Good electrical conductors in a liquid medium, usually made of a metal or non-metal or recognizable polyatomic ions**
- **Ionic bonds are the strongest type of chemical bond**
 - #1 Ionic Bond
 - "Strongest chemical bond in the world."
Do I HAVE A Strong electrolyte, Weak electrolyte, or Non-electrolyte?

Do you have a mix of elements?

- Yes: Metal and a nonmetal?
 - Yes: Metal + a recognizable polyatomic ion?
 - Yes: Ammonium (NH₄⁺) as your cation?
 - Yes: Strong Electrolyte! (dissociates completely)
 - No: Is it an acid? (formula typically starts w/ hydrogen)
 - Yes: Is it a strong acid? (HCl, HBr, HI, HClO₄, HClO₃, HNO₃, H₂SO₄)
 - Yes: Strong Electrolyte! (dissociates completely)
 - No: Weak electrolyte (incomplete dissociation)
 - No: Non-electrolyte!
 - No: Is it a base?
 - Yes: Non-electrolyte!
 - No: Is it a strong base? (LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂)
 - Yes: Strong Electrolyte! (dissociates completely)
 - No: Weak electrolyte (incomplete dissociation)

- No: It is a molecular compound with nonmetal atoms (and no ammonium⁺)
What's the Difference: Liquid and Aqueous Solutions?

Solution: homogeneous mixture of 2 or more substances, typically a solute and a solvent.

Liquid: the elements and/or compound is in its liquid state.

- Strong Electrolyte: ions in solution
- Weak Electrolyte: some ions in solution
- No ions in solution: non-electrolyte

Aqueous Solution: water is the solvent

- Salt water: salt is the solute, H₂O is the solvent
- Liquid: vodka water
- Gas: O₂ gas in water

- Salt particles can be in solution, that is when we say the solute is dissolved.
Parts of a Periodic Table Element

Element Name: Neon
Molar Mass: 20.180 grams / mol Ne

Atomic Number: 10
(# of protons, which is also equal to the # of electrons in a neutral atom)

Neon is a noble gas, which means its electron shells are completely full.

Chemical Symbol: Ne

of electrons in each electron shell: 2, 8
WHAT IS A MOLE?

→ A "mole" is a unit of measurement that chemists use to quantify a NUMBER of things. (More precisely, it is the number of atoms in 12 grams of carbon - 12!)

For example:

1 dozen chickens can be compared to... → 1 mole of oxygen atoms =

6.022142 \times 10^{23} oxygen atoms (also known as Avogadro's constant)

★ REMEMBER: ★ A "mole" has a unit attached! A mole is just another unit of measurement for large quantities of small entities (atoms, molecules, particles).

* You must specify moles of WHAT.*
How many atoms are in a compound?

→ Remember!

- A compound is a substance made of 2 or more chemical elements that are chemically bound together.
- Ex: Water = H₂O = 2 Hydrogen atoms and 1 Oxygen atom = \(\text{H} \) \(\text{O} \) covalent bonds.

- A mole is another word for: \(6.022 \times 10^{23} \) atoms, molecules, protons, etc. of something.

So... How many atoms of hydrogen and how many atoms of oxygen are in 1 mole of water?

Train-Track Method:

\[
\text{1 mole H₂O} \quad \frac{6.022 \times 10^{23} \text{ atoms H}_2\text{O}}{1 \text{ mole H}_2\text{O}} \quad \frac{2 \text{ atoms H}}{1 \text{ atom H}_2\text{O}} = 1.2044 \times 10^{24} \text{ atoms H}
\]

\[
\text{1 mole H}_2\text{O} \quad \frac{6.022 \times 10^{23} \text{ atoms H}_2\text{O}}{1 \text{ mole H}_2\text{O}} \quad \frac{1 \text{ atom O}}{1 \text{ atom H}_2\text{O}} = 6.022 \times 10^{23} \text{ atoms O}
\]
CONVERSION ROADMAP

Volume of Gas at STP
(@STP, 1 mol of gas occupies 22.4 L)

\[
\frac{1 \text{ mol}}{22.4 \text{ L}} \times \frac{22.4 \text{ L}}{1 \text{ mol}}
\]

Mole

Mass

* Molar mass comes from the periodic table! (ex: carbon = \(\frac{12.01 \text{ g}}{1 \text{ mol}} \))

Representative Particles
(Atoms, molecules, protons, etc.)

Avogadro's Number = \(6.022 \times 10^{23} \)
Dissecting our GAS LAWS

How are all our VARIABLES (P, V, n, + T) related?

Pressure and Volume: **BOYLE'S LAW**

\[P \cdot V_1 = P_2 \cdot V_2 \]

Temperature and Volume: **CHARLES' LAW**

\[\frac{V_1}{T_1} = \frac{V_2}{T_2} \]
Amount of gas (in moles) and Volume: **Avogadro’s Law**

- Decrease amount of moles → Volume decreases
- Increase amount of moles → Volume increases

\[
\frac{V_1}{n_1} = \frac{V_2}{n_2}
\]

Combined Gas Law: (the number of moles is constant)

- This law takes ONE SYSTEM with a set number of moles of gas and tells us the effects of changing the system’s pressure, volume, or temperature.

\[
\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}
\]

- **Boyle’s Law:** \(\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \)
- **Charles’ Law:**

This law combines Boyle’s and Charles’ laws.
IDEAL GAS LAW

What do we assume when we use this equation?

1. Gases are made up of molecules which are in constant, random motion in a straight line \(\text{not} \) \(\text{not} \) \(\text{not} \)

2. The molecules behave as rigid spheres \(\text{not} \) \(\text{not} \) \(\text{not} \)

3. Pressure is due to collisions between the molecules and container walls

4. All collisions are elastic (this means that there is no loss of kinetic energy during or after collisions occur)

5. Gas temperature is proportional to the average kinetic energy of the molecules

6. There are no (or negligible) intermolecular forces between gas molecules

7. The volume occupied by the molecules themselves is negligible relative to the container volume

The Ideal Gas Law:

\[PV = nRT \]

- \(P \) = pressure in atm
- \(V \) = volume in liters
- \(n \) = moles in mol
- \(T \) = temperature in Kelvin
- \(R \) = \(\frac{0.08206 \, \text{L} \cdot \text{atm}}{1 \, \text{mol} \cdot \text{K}} \)

★ Remember: all of your units must cancel!!
PERIODIC TABLE trends

Atomic Radius Increases

Electron Affinity Increases
Ionization Energy Increases

Electron Affinity Increases

Ionization Energy Increases
Electron Affinity: the amount of "desire" an atom has for electrons

Trend: As you move **UP** and to the **RIGHT,** electron affinity increases.

WHY?

1. As you move **UP** the periodic table → atoms have less electrons → less electron shells → shielding of protons in the nucleus → greater affinity for electrons

Beryllium has 4 protons and 2 electron shells. The 2 electron shells do not shield the positive nuclear charge very well.

<table>
<thead>
<tr>
<th>Beryllium</th>
<th>Magnesium</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 protons</td>
<td>12 protons</td>
</tr>
<tr>
<td>2 e- shells</td>
<td>3 electron shells</td>
</tr>
</tbody>
</table>

2. As you move **RIGHT** across the periodic table → electrons are added within a shell → shells become closer + closer to being completely "full" → greater affinity for electrons
2. (Electron Affinity continued)

Remember: atoms are "happiest" when they have full shells.

- this means:
 2 electrons in the first shell
 8 electrons in the second shell
 18 electrons in the third shell
 etc.

Beryllium is 6 electrons away from being "happy". It has a moderate electron affinity.

Fluorine is only one electron away from being "happy" (aka, having a full 2nd electron shell). It has a very high electron affinity.

IONIZATION ENERGY: the amount of energy required to remove an electron

Trend: As you move up and to the right, ionization energy increases.

WHY?

1. As you move up the periodic table, atoms have less electrons

 - less electron shells
 - less shielding of nuclear protons

 - nuclear positive charge is more exposed
 - harder to "pull" an e- away
 - higher ionization energy

 Helium's outer electrons are held very close to the nucleus, so it takes a lot of energy to ionize!

 Neon's outer electrons are further away from the nucleus, so they are easier to remove. It takes less energy to ionize Neon than Helium.
2. (Ionization Energy Continued)

As you move **RIGHT** across the periodic table → more protons are added

- Higher ionization energy ← harder to "pull" an electron away ← electrons in outer shell are held tighter ← increase in nuclear charge

Lithium has only 3 protons and 2 electron shells. The outer electron is not held as tight as lower ionization energy.

- Lithium: 3 protons, 2 electron shells

Nitrogen has 5 protons and only 2 electron shells. The outer electrons are held much more closely than those of lithium = higher ionization energy.

- Nitrogen: 5 protons, 2 electron shells

ATOMIC RADIUS: The size of an atom from the center of the nucleus to the boundary of the surrounding electron cloud.

- Trend: As you move **DOWN** and to the **LEFT** of the periodic table, atomic radius increases

WHY?

1. As you move **DOWN** the periodic table → more electrons are added

- Helium: 1 e- Shell
- Neon: 2 e- Shells

- Greater atomic radius ← more electron shells

2. As you move **LEFT** across the periodic table → less protons in the nucleus

- Lithium: 3 protons
- Boron: 5 protons

- Larger atomic radius ← electrons held less tightly ← weaker nuclear charge
References